
iC LE Cor~y.

- arnegie-Mellon University

N -j Software Engineering Institute -_

Language and System Support for
Concurrent- Programming

Curriculum Module SEI-CM-25

DTIC
0.* .ELEC

*yR= *IIII
/V 90/0



C U R R I C U L U M M O D U L E SEI-CM-25

Carnegie Mellon University
- Software Engineering Institute

Language and
System Support
for Concurrent

* Programming

Michael B. Feldman
The George Washington University

April 1990

Approved for public release.
Distribution unlimited.



This technical report was prepared for the

SEI Joint Program Office
ESD/AVS
Hanscom AFB, MA 01731

The ideas and findings in this report should not be construed as an official
DoD position. It is published in the interest of scientific and technical
information exchange.

Review and Approval

This report has been reviewed and is approved for publication.

FOR THE COMMANDER

Karl H. Shingler
SEI Joint Program Office

This work is sponsored by the U.S. Department of Defense.

Copyright 0 1990 by Carnegie Mellon University.

This document is available through the Defense Technical Information Center. DTIC provlde@ aoces to and Wasfer of
sdentific and technical information for DoD personnel, DoD contractors and potential contractors, and other U.S. Government
agency personnel and their contractors. To obtain a copy, please contact OTIC direcly: Defense Technikal Information
Center, Attn: FDRA, Cameron Station, Alexandria, VA 223044145.
Copies of this document are also available through the National Technical Information Service. For inndmoon n oiodring,
please contact NTIS directly: National Technical Information Service, U.S. Department of Commnerce, Spdrgs VA 22161.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the lrdemark holder.



Preface

This curriculum module is concerned with support for concurrent pro- Capsule
gramming provided to the application programmer by operating Description
systems and programming languages. This includes system calls and
language constructs for process creation, termination, synchronization,
and communication, as well as nondeterministic language constructs
such as the selective wait and timed call. Several readily available
languages are discussed and compared; concurrent programming
using system services of the UNIX ope ating system is introduced for
the sake of comparison and contrast. 7 R) C-

In the last decade, the arena of concurrent programming has widened Philosophy
from "pure" operating system applications to a multitude of real-time
and distributed programs.

Since the late 1960s, concurrent programming has been seen as neces-
sary to the implementation of computer-related objects in operating
systems, such as user processes and device drivers. The early con-
structs of concurrent programming came about in an effort to give the
relatively small community of system-kernel programmers a set of
operations to foster development of more reliable operating systems. Aocession For

NTIS GRA&I I"
In the more recent, expanded view, concurrent programming is seen as DTIC TAB o3
an approach to achieving a more faithful representation of objects in the Unannounoed 0
world being modeled by a program. Many programs are, in fact, simu- Justifloation
lations of some system in the physical world: an aircraft moving in
space, a bank with tellers and customers. The physical world consists of By..
many objects operating independently of one another, needing occasion- Distrlbutionl
ally to synchronize, communicate, or refer to shared information. In Availability Codes
this view, concurrent programming is useful because it provides a more W7 vai1 ad/or
natural mapping of these real-world objects to program segments. A Dist Spoolal
more natural representation is, it is said, easier to code, debug, and
maintain.

Since an increasing number of programs are best coded as concurrent
ones, an increasing number of programmers need to learn to do

SEI-CM-25 Language and System Support for Concurrent Programming



concurrent programming reliably and well. As concurrency has moved
from operating systems outward to applications, the need to do concur-
rent programming has moved from a small circle of systems
programmers to the much larger community of applications program-
mers.

Accordingly, attention is increasingly being paid to the problems of
concurrency as seen by the application programmer. Modern operating
systems such as UNIX, VMS, and MS provide system-service libraries
concerned with creation, scheduling, synchronization, and communica-
tion of concurrent processes. Further, recent programming languages
such as Ada, occam, and Concurrent C provide language-level con-
structs for concurrency.

Scope The purpose of this module is to provide a broad view of the world of con-
currency as seen by the application programmer. While no attempt is
made to cover all systems and languages, the various concurrency ser-
vices of UNIX and five readily available languages are surveyed in some
detail. The module provides the material needed to understand how
concurrency is supported in modern languages and systems, with
emphasis on the increased level of abstraction and portability provided
by language-level constructs.

A revised version of the module is planned. This version will include
more information on concurrent programming services provided by the
VMS and MVS operating systems.

Author's Comments on this module are solicited, and may be sent to the SEI

Address Software Engineering Curriculum Project or to the author:

Michael B. Feldman
Department of Electrical Engineering and Computer Science
The George Washington University
Washington, DC 20052

LC

ii Language and System Support for Concurrenl Programming SEI-CM-25



Language and
System Support for
Concurrent
Programming

L Processes, Their States and Operations Outline
1.1. Nondeterminism
1.2. Process States
1.3. Processes as a Type

1.3.1. Process Creation and Activation
1.3.2. Process Termination
1.3.3. Process Scheduling
1.3.4. Process Synchronization
1.3.5. Interprocess Communication
1.3.6. Nondeterministic Constructs

2. Supporting the Programmer's Interface to Concurrency
21. The Operating System Approach to Concurrency
2.2. The Language-Construct Approach to Concurrency
2.3. The Portable Library Approach to Concurrency

3. Concurrency at the Operating System Level
3.1. UNIX

3.1.1. Process Creation and Activation
3.1.2. Process Synchronization
3.1.3. Interprocess Communication
3.1.4. Process Scheduling
3.1.5. Process Termination
3.1.6. Nondeterministic Constructs

4. Concurrency Through Programming Language
Constructs
4.1. Co-Pascal

4.1.1. Process Creation and Activation

SEI-CM-25 Language and System Support for Concurrent Programming



4.1.2. Process Termination
4.1.3. Process Scheduling

4.1.4. Process Synchronization
4.1.5. Interprocess Communication
4.1.6. Nondeterministic Constructs

42 Ada
4.2.1. Process Creation and Activation

4.2.. Process Termination
4.2.3. Process Scheduling
42.4. Process Synchronization
42.5. Interprocess Communication

4.2.6. Nondeterministic Constructs
4.3. Concurrent C

4.3.1. Process Creation and Activation
4.3.2. Process Termination

4.3.3.. Process Scheduling

4.3.4. Process Synchronization
4.3.5. Interprocess Communication
4.3.6. Nondeterministic Constructs

4.4. occam
4.4.1. Process Creation and Activation
4.4.2. Process Termination

4.4.3. Process Scheduling
4.4.4. Process Synchronization
4.45. Interprocess Communication
4.4.6. Nondeterministic Constructs

5. Concurrency Through Portable Libraries

5.1. Modula-2
5.1.1. Process Creation and Activation
5.1.2. Process Termination
5.1.3. Process Scheduling
5.1.4. Process Synchronization

5.1.5. Interprocess Communication

5.1.6. Nondeterministic Constructs

S
2 Language and System Support for Concurrent Progranw'nng .SEI-CM-25



L Processes, Their States and Operations Annotated
The basic "unit" of concurrent programming is the process (called task in Outline
some implementations). A process is an execution of a program or section of
a program. Multiple processes can be executing the same (section of a)
program simultaneously. A set of processes can execute on one or more
processors; in the limiting case of a single processor, all processes are inter-
leaved or time-shared on this processor.

1.1. Nondeterminism

A fundamental property of concurrent processes is nondeterminism, that
is, at any time, it is not known what will happen next. This is true
whether the implementation is by interleaving or true parallelism. In the
former case, it is not known if an interrupt that causes process switching
will occur next, causing a process other than the currently running
process to run. In the latter case, the respective speeds of the various
processors cannot be perfectly matched, so that it is often not known
which processor will do its next instruction next. Put more formally, in a
set of nondeterministic components, at least the activity evoked, but possi-
bly even the final state, is not necessarily uniquely determined by the
initial state [Dijkstra75].

Sometimes it is desirable that the final state of a computation be determi-
nate even if the computation is not. For example, it is desirable that the
sum of two sub-expressions be the same whether the left side or the right
side is evaluated first. Causing the sub-expressions to be evaluated by
separate processes introduces nondeterminism, but the result should be
determinate.

A quotation from Edsger Dijkstra eloquently states the importance of
nondeterminism:

"Having worked mainly with hardly self-checking hardware, with which
nonreproducing behavior of user programs is a very strong indication of
a machine malfunctioning, I had to overcome a considerable mental
resistance before I found myself willing to consider nondeterministic
programs seriously. ... Whether nondeterminacy is eventually removed
mechanically-in order not to mislead the maintenance engineer-or
(perhaps only partly) by the programmer himself because, at second
thought, he does care-e.g. for reasons of efficiency-which alternative is
chosen is something I leave entirely to the circumstances. In any case
we can appreciate the nondeterministic program as a helpful stepping
stone." [Dijkstra75]

12. Process States

A process can, during its lifetime, be in one of several states. These
states are elaborated, running, ready, blocked, completed, and terminated.
We adopt the set of states used in discussions of Ada tasks because this set
is the most complete and general.

" A process is elaborated if its declaration (that is, the statements com-
prising the program or section of a program) has been processed and
thus the process can be activated.

" A process is running if its statements are actually being executed by a
processor.

* A process is ready if it is waiting only to be assigned to a processor.
* A process is blocked if it is waiting for some event to occur, such as

an input/output completion, a timed wakeup, or a synchronization
operation with another process. Sometimes the term asleep is used as

SEI-CM-25 Language and System Support for Concurrent Programming 3



a synonym. Note that a process waiting only for assignment tc a
processor is not blocked, but ready.

* A process is completed if it has finished executing its sequence of
statements but cannot yet terminate because it has active dependent
processes. This state is of interest in environments such as Ada in
which process termination always waits upon the termination of
dependent processes.

" A process is terminated if it never was, or no longer is, active.

A process is active if it is running, ready, blocked, or completed; a
process is awake if it is running or ready.

Figure 1 shows a state diagram for the process states.

Elaborated

Runin Ready Blocked

Errated

Figure 1. Process states

1.3. Processes as a Type

Current thinking about process management treats processes as a type.
Recall that a type consists of a set of values and a set of operations (we
consider the term abstract data type to be synonymous, and therefore will
use the more concise term for brevity). Viewing processes in this way is
consistent with the language view of processes, and gives us a canonical
framework in which to examine both the system and the language views.

A number of operations are associated with processes. These are creation
and activation, termination, synchronization, interprocess communication,
and scheduling. In addition, programming languages often include
nondeterministic constructs that affect the behavior of concurrent
programs. We shall use this categorization, loosely based on that in

4 Language and System Support for Concurrent Programming SEI-CM-25



[BaI89], to examine the concurrency support at both the system and

language levels.

1.3.1. Process Creation and Activation

We distinguish between creation and activation because in some
systems and languages, processes can be declared (created) but not
started (activated) until a later point in the creating program is
reached. Further, in some cases the activation is implicit, occurring
automatically when that point is reached, while in others the activa-
tion occurs only when an explicit operation is executed.
For our purposes, process creation is the elaboration of a declaration of
a code segment that may eventually be activated. Activation is then
the implicit or explicit operation that results in an execution of the
process (an is emphasized because there may be many such execu-
tions).

The two main ways to activate processes are as follows:
1. Activating a process to execute a specific body of code while the

activating process continues to execute.
2. Activating a list of processes to execute a list of statements concur-

rently while the activating process waits until the created
processes are done.

The first allows activation of an arbitrary number of processes. The
second activates only as many processes as there are statements, and
if the activation statement cannot itself be activated more than once at
the same time, say by recursion, the total number of processes that can
be simultaneously active is bounded. The first way is, therefore,
more general, but the second is easier to treat formally. Moreover, in
practice, it is usually possible to structure a concurrent system so that
only a fixed number of processes are needed.

The first way of activating a process is exemplified by the ability to
fork a process in UNIX and the ability to declare and activate nested
task objects in Ada. The second is exemplified by the cobegin-
coend construct, which gives a list of statements to be executed
concurrently.

1.3.2 Process Termination

How a process terminates differs from system to system and can be
fairly complex. A process can be terminated implicitly, for example,
if it "flows off the bottom" of its sequence of statements, or explicitly,
by means of a kill (UNIX) or abort (Ada) operation.

In some languages (Ada, for example), process termination is struc-
tured in the sense that a process cannot terminate while it has active
dependent or "child" processes; this makes it impossible for a process
to disappear and leave its children without context. In such
le -guages a process can express its willingness to terminate if and
only if all the other conditions are right (for example, if its parent
and siblings are also willing to terminate).

13.3. Process Scheduling

By process scheduling we mean the method(s) by which processes are
assigned to processors. In other terms, scheduling is the means by
which processes move from the ready state to the running state. In the
event that there are fewer processors than processes, some sort of
process scheduler must arbitrate among various processes contending

SEI-CM-25 Language and System Support for Concurrent Programming 5



for scarce processor resources (in the limiting case, for a single
processor).

Process scheduling is of course an important part of classical operat-
ing system design; with the advent of programmer interfaces to
concurrency, and especially of languages like Ada designed to
support concurrency in a system-independent way, process scheduling
has become an important issue for language designers and imple-
mentors, and for applications programmers as well.

Considering the multiprocessor case, scheduling issues include
whether the programmer can explicitly assign processors to processes,
or whether this is the private domain of the process bcheduler. In the
case of contention for the processor(s), there are a number of addi-
tional issues to consider:

* Whether, and how, the programmer can assign scheduling priori-
ties, and whether these priorities are statically determined or
dynamically variable at run time.

- Given several contending processes of equal priority, how the
manager determines which one to schedule, and whether the
programmer can control this.

9 Whether time-slicing is implemented, and if so, whether the
programmer can control it in any way (here we use time-slicing to
mean allowing each process a fixed quantum of time on the
processor, after which it is interrupted and perhaps "swapped out").

* Whether a high-priority task moving from a blocked to a ready
state (for example by the expiration of a delay or sleep operation,
or completion of an 1/0 call), immediately interrupts the running
process (preemptive scheduling), or whether the running process
is allowed to run until it blocks (run-till-blocked scheduling).

13.4. Process Synchronization

There are two kinds of synchronization primitives:

1. Unenforced primitives, whose use to access shared objects, whether
memory or a communication channel, is not enforced by the
language or system.

2. Enforced primitives, whose use to access shared objects is indeed
enforced by the language or system.

If use is enforced, then there is no way to access the object without that
access being under the control of the synchronization primitives.
This guarantees that access to the object is orderly. This fact makes
proving assertions about programs much easier, as one does not have
to worry about an object changing behind one's back, i.e., via an
assignment by a process that chooses not to subject itself to access
control.

Among the. primitives of the unenforced kind are semaphores
[Dijkstra68] and other devices that allow programming of critical
regions. If these are properly used, one is guaranteed that at most one
process can be in any critical region controlled by any one
semaphore. If one has placed all uses of an object inside these critical
regions, then one knows that at most one process can be accessing that
object at any time. The problem with this approach is that one is not
forced to put all accesses to the object inside these critical regions;
there can be uses of such an object anywhere in the program.

Among the primitives of the second kind are monitors [Hoare74],
which are basically abstract data type modules that guarantee that at

6 Language and System Support for Concurrent Programming SEI-CM-25



most one process at a time can be executing any procedure within any
instantiation of the monitor. When combined with the compiler's
protecLion that there be no use of a local variable of the monitor except
within the monitor, one is assured that at most one process at a time
can be accessing these variables.

Other unenforced primitives are UNIX's signals and similar struc-
tures in other operating systems. Other enforced primitives are Ada's
entries, occam's communication channels, and UNIX's pipes.

Observe that monitors and Ada's entries can be misused to implement
semaphores; in these languages, there is nothing that limits the
programmer to use only variables local to the construct. Thus, there
is nothing guaranteeing that a non-local variable of the construct is
not also accessed from a place not inside the construct. However, if
no such construct uses non-local variables (except possibly only to
read them) there is no such problem, and proofs can be carried out
without worrying about them. In a full-declaration, strongly typed
language such as Ada, the compiler can detect all uses of non-local
identifiers. Thus, there is the possibility of compile-time enforcement
of limited access.

1.3.5. Interprocess Communication

With any method of creating processes there are two basic methods for
processes to communicate:

1. Shared variables: the processes share memory and thus
communicate by writing to and reading from any variable that
both can access;

2. Message passing: the processes share no main memory and have
to communicate by sending messages to each other via communi-
cation links accessed by each process as an input/output device.

The former can be used only when processes run on the same
machine, while the latter can be used either when the processes run on
the same machine or when the processes run on separate machines
connected by a communication net. It is conceivable for shared vari-
ables to be used where processors do not share memory: in this case,
the compiler or run-time system creates multiple physical copies of a
single logical variable, and becomes responsible for making sure
that all copies are brought up to date at the same time. The implemen-
tation difficulties in such a scheme are obvious.

The former method is more general in that the values communicated
via variables can be information that is not really useful when
transmitted from one machine to another, such as main memory
addresses. However, this generality is accompanied by more oppor-
tunities for interference, race conditions, etc. These problems
complicate any attempt to prove the behavior of the programs involved.
Avoiding these problems in shared-memory concurrency requires a
disciplined use of synchronization primitives, which are not easy to
model formally. Moreover, there may be no guarantee that all access
to these shared variables is via the synchronization primitives; thus,
one must prove the absence of other accesses. The latter restricts
communication enough so that all communication is via the message
passing or input/output primitives. There is no chance for the prob-
lems of interference to occur. The greatly reduced chance for interac-
tion allows modeling the processes as largely independent except for
the explicitly announced interaction via message passing or input/-
output.

SEI-CM-25 Language and System Support for Concurrent Programming



Within the general scheme of message passing are two alternatives:
1. Synchronous, in which the sending process is blocked until the

receiving process has accepted the message (implicitly or by some
explicit operation).

2. Asynchronous, in which the sender does not wait for the message
to be received but continues immediately. This is sometimes
called a nonblocking or no-wait send.

Synchronous message passing, by definition, involves a synchroniza-
tion as well as a communication operation. Since the sender process
is blocked while awaiting receipt of the message, there can be at most
one pending message from a given sender to a given receiver, with
no ordering relation assumed between messages sent by different
processes. The buffering problem is simple because the number of
pending messages is bounded.

In asynchronous message passing, pending messages are buffered
transparently, leading to potential unreliability in the case of a full
buffer. For most applications, synchronous message passing is
thought to be the easier method to understand and use, and the more
reliable one as well. Asynchronous message passing allows a higher
degree of concurrency.

Of the widely known and widely available languages supporting
message passing, most (including CSP, occam, and Ada) implement
a synchronous model. Concurrent C initially supported only
synchronous message passing, but now permits both models.

A particular variety of synchronous message. passing is the
rendezvous of Ada and Concurrent C. Message types are called
entries in Ada and transactions in Concurrent C. There is always a
caller and a server, or sender and receiver; the sending operation is
called a call; the receiving operation is called an accept. A process
arriving at a call operation becomes blocked until the receiver is
ready to accept the call. A server arriving at an accept operation
becomes blocked if no call is pending. Each language allows both
selective and timed call and accept operations to prevent indefinite
blocking. When the caller and the server are both ready to communi-
cate, a rendezvous takes place. During the rendezvous, data can be
passed to and from the server, and the server may carry out a compu-
tation while the caller remains blocked. The rendezvous is properly
called extended because an accept statement may involve extensive
processing in order to construct the reply parameters [Burns85].

A particularly complete, lucid, and balanced comparative discussion
of synchronous and asynchronous message passing can be found in
Chapter 7 of [Gehani89]. To summarize the discussion there,
synchronous message passing has the following advantages over
asynchronous:

* Bidirectional information transfer, which is not possible in
asynchronous message passing.

" Understandability, in that a sending process resuming execution
knows that a message has been received.

* Clearer semantics, in that semantics do not depend on system
resources (hidden buffering, for example).

* Easier error reporting, because sender waits for acknowledge-
ment.

* Built-in synchronization.

8 Language and System Support for Concurrent Programming SEI-CM-25



* The possibility of timeout requests.
* Easier detection of problems such as deadlock; in asynchronous

implementations, these conditions may arise only when the
system is "stressed".

" Ease of implementation.

The advantages of asynchronous message passing are:
" Maximum flexibility and expressiveness for the programmer.
" The possibility of pipelining message transmission.
" Easy simulation of synchronous message passing.
* More efficient implementation, if information flow in the applica-

tion is unidirectional.

1.3.6. Nondeterministic Constructs

The way processes interact is often not deterministic, but rather is
determined as execution progresses. A process may wish to select
other processes to interact with, depending on its own state and on
pending requests for interaction from other processes. For example, a
buffer process may accept a request from a producer to store an item
whenever the buffer is not full. It may accept a request from a
consumer to supply an item whenever the buffer is not empty. And if
both requests arrive simultaneously, it must decide between them. To
program behavior like this, a notation is needed to express and
control nondeterminism [Bal89].

Some communication operations are nondeterministic: a message
received indirectly through a port may have been sent by any process.
Such an operation expresses nondeterminism, but does not control it.

Many languages provide a construct for controlling nondeterminism;
this construct, based on Dijkstra's guarded command [Dijkstra75] is
usually called a select statement. A select statement usually consists,
in some syntactic form, of a list of guarded commands of the form

guard -> statements

A guard consists of a boolean expression followed by some sort of
communication request. Upon entry to the select, the guards are eval-
uated and the commands are partitioned according to whether the
guards are true or false. Those with false guards are ignored; among
those with true guards, one is selected nondeterministically.

The preceding paragraph is an oversimplification; each language
supporting select statements has its own details and idiosyncracies.
Languages with select statements include occam, Ada, and
Concurrent C.

2. Supporting the Programmer's Interface to Concurrency
Since operating systems began in the 1960s to support concurrent processes,
some means have been provided to the programmer (if only the system pro-
grammer) to create and manage them. Over time, these means have fallen
into three categories:

1. Libraries of supervisor calls to proprietary operating systems.
2. Special (syntactically distinct) language constructs, independent of the

operating system or target computer.

SEI-CM-25 Language and System Support for Concurrent Programming 9



3. Language constructs at the semantic level only; that is, subroutine
libraries supporting process types and operations, independent of the
operating system or target computer.

Examples of the first approach are the system-call libraries of VM and MVS
(IBM mainframe operating systems), and VMS (DEC VAX minicomputer
operating system). Example languages embodying the second approach are
Concurrent Pascal, Ada, Concurrent C, and occam. The best example of the
third approach is the process module of Modula-2.

The interrelationship between the C programming language and the UNIX
operating system is something of a special case. On the one hand, C's support
for concurrency is certainly at the level of supervisor calls; on the other,
UNIX itself is such a portable (and widely-ported) operating system that, in a
very real sense, concurrent programming in UNIX can be independent of a
hardware platform. Indeed, a portable specification of process management
in UNIX is specified in the Portable Operating System Implementation
Standard (POSIX) [IEEE88].

However, C is available and widely used on non-UNIX operating systems,
for example MS-DOS, where the concurrency library is quite different. Thus
we consider the C/UNIX connection to be more in the first category than the
third.

2.1. The Operating System Approach to Concurrency

Not much can be said in a general way about concurrency support via
system calls. Typically these are available either from assembly
language or from a high-level language; by definition, programs using
them are entirely non-portable because they are tied explicitly to the oper-
ating system.

Proponents of this approach argue that it is the only way to achieve
acceptable run-time efficiency, especially in real-time systems, because a
system-independent approach to processes does not map cleanly enough
onto the underlying system-level processes. Opponents argue that this
approach perpetuates hardware-first design and causes expensive soft-
ware systems to be rewritten almost from scratch just to adapt them to
emerging hardware or system technologies.

It is also the case that because system-level concurrency primitives are at
a lower level of abstraction than language-level ones, concurrent
programs using system services are more complex, less obvious, and
(probably) more difficult to debug.

2.2 The Language-Construct Approach to Concurrency

As concurrent programming is increasingly seen as having broader
application than the construction of system kernels, attention is increas-
ingly being given to designing programming languages so that they
support concurrent programming. Emphasis is placed on building struc-
tures into the languages, instead of just providing supervisor calls in the
form of subroutine libraries. There are three important reasons for creat-
ing special language structures for concurrency:

1. Maintainability. Concurrency is expressed in a way that is clearly
visible to the writer and reader, rather than being hidden in the
bodies of the called subprograms. Often the concurrent operations
follow the same sort of block structure as the sequential operations;
their use results in a program which is better structured and there-
fore easier to test and maintain.

10 Language and System Support for Concurrent Programming SEI-CM-25



2. Abstraction. If concurrency is being used to model objects in the
physical world, then this modeling is clearer and more natural if the
concurrent program segments follow an identifiable structure that
distinguishes them from sequential segments.

3. Portability and Machine-Independence. A program will be less
machine-dependent if all structures in it, including those imple-
menting concurrency, are designed independently of a given operat-
ing system or hardware platform.

As seen above, arguments against the use of language-level constructs
typically emphasize the performance penalties often associated with
machine-independence. Indeed there may be some short-term tradeoffs,
but these are no different from the short-term penalties we have paid
historically whenever functionality has been moved from a lower level to
a higher one. In the longer term the penalties diminish: with language
maturity comes greatly increased optimization by the compiler, and often
the hardware evolves to support software needs. Particularly useful
historical examples of this evolution are:

" The greatly increased efficiency of procedure calls generated by
modern compilers and also the nearly universal hardware support for
run-time stacks.

" Universal availability of hardware support for arithmetic: in older
computers, not only floating-point computations, but, in some cases,
even multiplication and division were done purely in software.
Today's users of personal computers can trade cost for performance
in considering whether to purchase math co-processor chips.

There is no reason to doubt that concurrent programming will fit into this
historical scheme. Evidence for this is seen in the Ada context, where
compilers already have evolved so that task operations have been greatly
speeded up, and in the trend toward hardware support for context switch-
ing.

An argument more difficult to counter is the one that a rigid, fixed set of
syntactic constructs is closed and cannot be modified or extended without
imposing a major change on the language definition and all existing
compilers. The only counter-argument is that this inflexibility is no
worse than that found in any other set of high-level language features; by
definition, high-level features must be described in language reference
manuals and recognized by compilers. A change to any feature of a high-
level language is costly.

2.3. The Portable Library Approach to Concurrency

A compromise position between the two extremes of operating systems
primitives and programming language structures can be found in the
portable-library approach to concurrency. With this approach, no special
syntactic structures are imposed on the language. Instead, a library or
module supports concurrency by defining types (process, for example),
and operations in the form of subprograms that can be called from an
application. The programmer interface to such modules is machine- and
system-independent; the implementation of the modules, of course,
depends upon the underlying operating system and hardware.

Proponents of this approach argue that it embodies all the virtues of
machine-independence and portability, and yet is open in the sense that a
module can be extended without imposing any compiler reimplementa-
tion costs. This is certainly true, but if the syntactic nature of concur-
rency is missing, so is the high-level abstraction and visible use of
concurrency. Recent efforts to standardize a set of concurrency primi-

SEI-CM-25 Language and System Support for Concurrent Programming 11



tives for Modula-2 through two library modules will help alleviate this

problem [BS1891.

3. Concurrency at the Operating System Level

3.1. UNIX

UNIX [IEEE88, Kernighan84, Rochkind85] is not a single operating
system, but an entire family of operating systems. Specifically, the
constructs for concurrent programming differ somewhat between the
System V subfamily and the Berkeley subfamily; and at the detail level
there are even vendor-to-vendor or version-to-version differences within
subfamilies. The discussion here is therefore necessarily oversimplified
to avoid focusing on the differences and to provide a "portable" view of
UNIX. The discussion is based chiefly on the POSIX standard [IEEE88],
which describes the nearest thing to a common, portable, UNIX program-
mer's interface. Even this is not entirely portable, because none of the
current UNIX systems implements precisely the POSIX standard.

3.1.1. Process Creation and Activation

UNIX uses a pair of system calls, fork and exec. The fork call
creates a copy of the forking process, but with its own address space.
The exec call is invoked by either the original or copied process to
replace its own virtual memory space with a new program, which is
load into memory, destroying the memory image of the calling
program.

3.1.2 Process Synchronization

Some versions of UNIX implement semaphores. The only common
synchronization mechanism is the signal. Signals fall into several
functional categories, ranging from interrupt-like signals to a
process-abortion command.

3.1.3. Interprocess Communication

Shared memory is implemented in some versions of UNIX. The only
form of communication common across versions is the pipe. A pipe
may be created before a fork; its process endpoints are then set up
between the fork call and the exec call. A pipe is essentially a queue
of bytes between two processes; one writes into the pipe, and the other
reads from the pipe. The size of the pipe is fixed by the system
(typically 4096 bytes). Reading from an empty pipe or writing to a
full one causes the process to be blocked until the state of the pipe
changes.

3.1.4. Process Scheduling

No single process scheduling scheme appears across UNIX versions;
the POSIX standard does not specify one. It can be assumed that in
particular versions, process priorities can be assigned and time-
slicing is implemented.

3.1.5. Process Termination

A process terminates by using the exit system call; its parent process
can wait on the termination event by using the wait system call.

1 2 Language and System S-pport for Concurrent Programming SEI-CM-25



3.1.6. Nondeterministic Constructs

UNIX does not provide an explicit construct for expressing or control-
ling nondeterminism.

4. Concurrency Through Programming Language
Constructs

In surveying the concurrent programming facilities of a number of
programming languages, this module has focused on languages likely to be
available to students and teachers for experimentation. The instructor or
student interested in a comprehensive survey of languages for concurrent
programming, including quite thorough coverage of current research, is
referred to the excellent paper by Bal, Steiner, and Tanenbaum [Bal89].

We have chosen four languages for comparison in this section: Co-Pascal,
Ada, Concurrent C, and occam. A discussion of Modula-2 appears in the next
section, as concurrency in Modula-2 is really based on portable libraries
rather than language primitives.

As in the operating systems section, we have followed an organizational
model in which, for each language discussed, a background and historical
section is followed by descriptions of the concurrent programming facilities
in the language, grouped according to the major categories of operations
introduced in Section 1.3. The discussion is not intended to teach the
languages, but rather to orient the reader to the facilities and important liter-
ature. Accordingly there is almost no discussion of syntax or presentation of
code segments; rather, there is a prose description of the various operations.

4.1. Co-Pascal

* Co-Pascal is the concurrent language of the examples in the textbook by
Ben-Ari [Ben-Ari82]. Included with the book is a Pascal source listing of
a portable implementation of this language, built as a modification of the
Pascal-S compiler/interpreter of Niklaus Wirth. Versions exist for
several timesharing computers, and a version was produced by
Schoening [Schoening86] for the IBM Personal Computer family.

Co-Pascal is a subset of Pascal (sets, pointers, and dynamic allocation
are missing) with the addition of concurrent programming constructs as
described below. The recursive-descent compiler produces P-code instruc-
tions that are interpreted.

This is an interesting system with which to begin the study of concur-
rency, because even though it is essentially an educational system of
limited capacity and it does not compile genuine machine code, it embod-
ies the cobegin-coend style of creating and activating processes, as well
as a multivalued semaphore type with wait and signal operations. Most
interesting for students, the process scheduler employs time-slicing
(where the quantum is measured in P-code instructions) and scheduling
by random selection among the ready processes. This nondeterminism
serves as an excellent way to convince students of the need for mutual
exclusion and the benefits of concurrency as an abstraction mechanism.

Even on a single-processor computer (including a personal computer), the
problems of concurrency can be clearly illustrated and solutions tested
with very little overhead but with a realistic execution model.

4.1.1. Process Creation and Activation

Procedures with parameters can be activated simultaneously as
processes by enclosing their invocations between a cobegin-coend

SEI-CM-25 Language and System Support for Concurrent Programming 13



pair. The same procedure can be associated with multiple processes;
this is useful in illustrating the difference between a procedure called
sequentially and one activated as one or more processes. It is not
possible to nest cobegin-coend pairs. Formally, when a cobegin is
encountered, all procedure invocations are created as processes; they
are all activated when the matching coend is reached; the main
program is suspended while processes are active.

4.1.2. Process Termination

A process terminates when control reaches the end of its statements.
Execution of the main program resumes when all processes within a
cobegin-coend pair have terminated.

4.1.3. Process Scheduling

The scheduler allows the running process to execute a randomly
chosen number of P-code problems or to block on a semaphore,
whichever comes first. At this point, a random selection is made
among the ready processes, and the selected process is resumed.

4.1.4. Process Synchronization

Synchronization is done by means of semaphores with wait and
signal operations. A semaphore is just an integer variable; wait(s)
and signal(s) are compiled as procedures passing the address of the
parameter. The wait operation is implemented as:

if s> 0
then s := s- 1
else SUSPEND := address of s

(SUSPEND is a field in the control block of each process)

The signal operation is implemented as:

search for an active process with SUSPEND = address of s
if one is found

then set its SUSPEND field to 0
else s := s + 1

Ben-Ari notes that this is a starvation-free implementation suggested
by Morris [Morris79].

4.15. Interprocess Communication

Interprocess communication is done exclusively by means of shared
variables; no message-passing or other abstraction mechanism is
provided.

4.1.6. Nondeterministic Constructs

No nondeterministic constructs are provided, but unpredictable execu-
tion is assured by the randomness of the process selection algorithm
in the scheduler.

42 Ada

The language that became Ada was chosen in a competition sponsored in
the late 1970s by the U. S. Department of Defense (DoD); Ada is intended
to become the language in which new defense-related software is written.
Concurrent programming primitives were included in the language
because the various DoD requirements documents ("Steelman" and its
predecessor reports) listed concurrent programming as essential to the
mission of the language. Standardized in 1983, before any viable compil-

14 Language and System Support for Concurrent Programming SEI-CM-25



ers existed, Ada was the first language intended for widespread industry
adoption and use to include a full set of concurrent programming primi-
tives [DoD83, Nyberg89, Ichbiah86, Gehani84, Burns85, Shumate88].

At this writing, approximately 300 different compilers have been vali-
dated (tested for conformance to the standard) by the government; compil-
ers exist for virtually all current computers. The suite of validation test
programs, called the Ada Compiler Validation Capability, continues to
evolve slowly; a new version goes into effect every eighteen months.
A process in Ada is called a task. Each task is actually an object of a task
type; a task type is declared by the programmer; the programmer can, in
the limiting case, simply declare individual tasks, a type for each of
which is implicitly declared by the compiler. Such tasks are said to have
anonymous types. A task type declaration consists of a specification and a
body. The specification consists of declarations of the entries (messages)
that can be called and accepted; each entry has an associated parameter
list, similar to that for a procedure. The task body has the structure of an
ordinary block, complete with its own declarations. Since task bodies are
active code, a typical task body is written as an infinite loop.

42.1. Process Creation and Activation

A task in Ada is created in one of two ways: by declaration or by
dynamic allocation. Simply declaring one or more variables of a
given task type creates the tasks; it follows that arrays of tasks of a
given type can also be declared and created. It is also possible to
declare a pointer type capable of pointing to a task object; a call to the
allocator operation new dynamically creates an object of the task
type, returning a pointer to it in some pointer variable. In supporting
task types and declared or dynamically allocated task objects, Ada
treats processes in a manner analogous to data structures.

Ada is a block-structured language, so a task object is declared in the
declaration part of some begin-end block. A task object so declared
is activated (and begins execution) just before the statements of the
block are executed. If more than one task is declared in a given
block, the language standard [DoD83] states that they are activated "in
an order not defined by the language." The declaring program unit
continues execution as an independent task. Note that no explicit
task activation operation is required or provided; activation is
implicit.
A task object dynamically created by an allocator call is activated
just after its creation; execution of the creating program unit then
proceeds as an independent task. This is roughly analogous to a fork
operation. It is a consequence of this dynamic creation capability that
the total number of active processes is bounded only by available
memory, not by anything in the language.

4.2.2 Process Termination

A task always has a master on which it depends. Intuitively, the
master is the program block in which the task is declared. A task
can also be declared in a library package, in which case the package
is the master. A dynamically activated task depends upon the block
in which the pointer type is declared, not upon the block in which the
allocating statement appears.

Task termination in Ada is designed to follow this dependency. A
task that reaches the end of its sequence of statements is said to be

SEI-CM-25 Language and System Support for Concurrent Programming 15



completed. A task terminates [Gehani84, p. 46] if any of the following
conditions hold:

* It has completed and it has no dependent tasks.
* It has completed and all dependent tasks have terminated.
" It is waiting at a terminate alternative (see discussion of the

select statement below), its master is completed, and all its
siblings (other tasks dependent on the same master) have either
terminated or are waiting at a terminate alternative.

Termination is intended to be reliable in that a task cannot terminate
and leave a dependent child with no context or master.

The Ada standard does not specify whether tasks declared in library
packages must ever terminate; since a library package is global to a
main program importing it, conceptually a main program can
terminate while library tasks continue to execute. This is a poten-
tially useful concept in the case of background tasks whose execution
persists across several program executions.

42.3. Process Scheduling

The Ada tasking model is supposed to be rich enough to be imple-
mented on any number of underlying machine architectures, from
simple embedded processors to personal computers to huge computer
networks. Accordingly, the precise algorithm for distributing tasks
over processors, or indeed for scheduling tasks on a single processor,
is not defined by the language.

Ada supports a weak static scheduling priority scheme: a task may be
given a priority at compilation time, by means of a compiler direc-
tive. All objects of the same task type have the same priority. The
number of priorities is not defined by the language; the limiting case
of a single priority (i.e., no differentiated priorities at all) is allowed.
Section 9.8 of the Ada language reference [DoD83] says the following
about priority:

The specification of a priority is an indication given to assist
the implementation in the allocation of processing resources to
parallel tasks when there are more tasks eligible for execution
than can be supported simultaneously by the available process-
ing resources ...

If two tasks with different priorities are both eligible for execu-
tion and could sensibly be executed using the same physical
processors and the same other processing resources, then it
cannot be the case that the task with the lower priority is execut-
ing while the task with the higher priority is not.

For tasks of the same priority [or tasks without explicit priority]
the scheduling order is not defined by the language. ... If the
priorities of both tasks engaged in a rendezvous are defined, the
rendezvous is executed with the higher of the two priorities ...
Priorities should be used only to indicate relative degrees of
urgency; they should not be used for task synchronization.

The Rationale [Ichbiah86] states that the priority rules require preemp-
tive scheduling if the implementation supports more than one priority.
No other scheduling rules are specified: time-slicing is not required;
indeed, if all active tasks have the same priority, run-till-blocked
scheduling is perfectly legal. Note that as of this writing, not all

16 Language and System Support for Concurrent Programming SEI-CM-25



implementations that support priorities do preemptive scheduling; the
evolving validation suite apparently does not test this yet.

A great deal has been written about Ada's task scheduling (or lack of
it). Some writers in the real-time systems industry have been espe-
cially bitter critics of the lack of programmer control. A well-written
critique of task scheduling appears in [Burns85], and [Cornhill87] is a
typical example of real-time concerns.

4.2.4 Process Synchronization

Synchronization in Ada is done by means of the rendezvous.
A calling task arriving at an unconditional entry call in some
server task is forced to block until the call is accepted. The language
specifies that pending calls on a given entry are placed on a strict
first-in, first-out queue. A server task arriving at an unconditional
accept statement blocks if there are no pending callers. Calls and
accepts need not be unconditional, however; they can be selective or
timed on both the caller and server sides. See the discussion below of
nondeterministic constructs.

42.5. Interprocess Communication

Ada supports both shared-variable and synchronous message commu-
nication. A task, like a sequential subprogram in Ada, is allowed to
make non-local references to any variables which are visible to it.
Thus two tasks to which the same non-local variable is visible may
both access it. Such access is not protected by the language.

This is obviously not the recommended way to do task communica-
tion; it is better to communicate values via entry parameters during a
rendezvous. Entry parameters may be passed to or from the server, or
may be bidirectional. The recommended way to access a shared data
structure is to encapsulate that structure in a server task which acts as
a monitor, using entries to support read and write access rights.

42.6. Nondeterministic Constructs

Ada uses a form of guarded commands called the select statement. A
select statement consists of a list of (possibly guarded) accept alterna-
tives. A guard is a boolean expression. Upon arrival at a select, all
guard expressions are evaluated; then the alternatives are divided
into an open set and a closed set, according to whether their guards
are, respectively, true or false. Among the open alternatives, a single
call is accepted. If calls are queued on several entries for which
corresponding accept alternatives are open, "one of them is accepted
arbitrarily (that is, the language does not define which one)." [DoD83,
sect. 9.7.1].

The use of the word arbitrarily has been the cause of much contro-
versy. In fact, the language of the standard does not force an
arbitrary (i.e., nondeterministic or random) selection; what is arbi-
trary is that the standard does not require a particular algorithm for
the selection, i.e., the manner of selection is implementation-
dependent. The selection need not be fair; indeed, an official
commentary [Nyberg89, sect. 9.7.1] points out that the priorities of the
callers at the heads of the various queues may, but need not be, taken
into account. The Ada Rationale [Ichbiah86l recommends that the
selection method not be particularly predictable, advocating that using
guards to force predictability is better design strategy because it is
more explicit.

SEI-CM-25 Language and System Support for Concurrent Programming 17



When an alternative is selected, the accept and possible subsequent
statements are executed. During execution of the accept, i.e. during
the rendezvous, the caller remains blocked. If no callers are queued
on any of the open alternatives, the behavior of the select statement
depends upon whether one of several other (mutually exclusive) alter-
natives is present:

e An else clause, only one of which may be present on a select. If it
is present, it is selected if no callers are queued on open accepts,
or if no alternatives are open. The else clause may consist of a
sequence of statements to be executed.

* A (possibly guarded) delay alternative, which serves as a timeout.
The operand of a delay is in units of elapsed seconds; if an open
delay alternative is present, the server waits at the select until
either the delay expires or a caller arrives at an open accept,
whichever comes first. There may be more than one delay alter-
native; this is sensible if they are guarded to control which of
several delay periods is to apply.

* A (possibly guarded) terminate alternative, of which only one may
be present. This alternative may (only) be selected under the
conditions described above under process termination.

So much for the server side. The caller is also not restricted to an
unconditional entry call. There is a selective call statement, which
enables a caller to withdraw its call and leave the queue if the server
is not immediately able to accept the call, and a timed call, in which
the call is withdrawn if it cannot be accepted within a given delay.
Beginners are often confused by the fact that the caller-side selective
and timed calls are also formed as "stripped-down" select statements,
but the semantics are clearly different from the server-side select.

4. Concurrent C

Concurrent C [Gehani89l was developed in the middle 1980s by Narain
Gehani and William Roome of AT&T Bell Laboratories. Available for
several years only to researchers, and currently implemented on VAX,
Sun, and AT&T computers, Concurrent C has become a commercial
product for which, at this writing, implementations are expected for DOS
and OS/2 target environments.

Concurrent C is an upward-compatible extension of C, with the addition of
a concurrency model that is quite similar to Ada's, but with a number of
improvements. It has been implemented as a C preprocessor plus run-
time support for process management.

Gehani states, "We picked C as the basis for our work on parallel
programming because (a) it is an immensely popular language, (b) it
does not have parallel facilities, and (c) we use it. We had several objec-
tives in enhancing C with concurrent programming facilities:

1. To provide a concurrent programming language that can be used for
writing systems on genuinely parallel hardware, such as a network
of microprocessors or workstations.

2. To provide a test bed for experimenting with a variety of high-level
concurrent programming facilities.

3. To design a practical concurrent programming language that can be
implemented on a variety of currently available multiprocessor
architectures.

"C++ is an extension of C that provides data abstraction facilities
[Stroustrup86]. Concurrent C does not provide data abstraction facilities

S8 Language and System Support for Concurrent Programming SEI-CM-25



but its parallel programming facilities can be used in conjunction with
C++. The Concurrent C compiler, as a compile-time option, accepts C++."
[Gehani89]

Most of the terminology of Concurrent C conforms to that of Ada; the
main syntactic differences are that a task in Ada corresponds to a
process in Concurrent C, and an entry in Ada corresponds to a transac-
tion in Concurrent C. Since the concurrency model is based on Ada but
improves upon it, the discussion that follows focuses on the differences
from Ada.

4.3.1. Process Creation and Activation

All processes in Concurrent C are objects of a process type; there is
nothing corresponding to Ada's directly declared tasks of anonymous
type. Whereas most tasks in Ada are implicitly activated, all
processes in Concurrent C are explicitly activated at the time they are
created by a create operation; the value returned by the create can be
stored in a process variable, but need not be. In Ada, then, tasks of
anonymous type are possible but tasks almost always have identifiers
(or array elements) naming them; in Concurrent C there are no
anonymous process types, but there can be anonymous process objects
if the value returned by the create operation is discarded. In this case,
of course, the process cannot be referred to or its transactions called.

Another important difference in Concurrent C is that as a process
object is created, parameter values can be passed to it. An Ada task
cannot have parameters supplied at creation or activation time, so
these values must be explicitly passed during a rendezvous.

4.32 Process Termination

Process definitions in Concurrent C cannot be nested; this conforms
to C's philosophy that function definitions cannot be nested. This
makes termination somewhat simpler than in Ada, though the basic
idea is the same. The difference is that in Ada a subset of the tasks
can be made to terminate collectively (using the terminate alterna-
tive) while others continue to run. In Concurrent C the terminate
alternative can be taken only if all the processes in the program have
completed or are waiting at a select statement with a terminate alter-
native. Because of the block structuring in Ada, termination is more
complex and the semantics are harder to define. In addition, the
mechanism is harder to implement in a distributed environment
because it is hard to get a consistent snapshot of the state of all
processes on all processors. In Concurrent C, execution of the termi-
nate alternative leads to termination of the entire program.

43.3. Process Scheduling

Concurrent C permits different process objects of the same type to have
different priorities; further, dynamic alteration of scheduling priori-
ties is permitted using a set of function calls to modify priorities.

The Concurrent C create operation has an optional clause allowing
the programmer explicitly to specify a processor upon which to acti-
vate the created process. There is nothing defined in the Ada
standard to accomplish explicit process/processor binding, although
multiprocessor Ada implementations can provide for this using
implementation-dependent compiler directives.

0
SEI-CM-25 Language and System Support for Concurrent Programming -- 19



4.3.4. Process Synchronization

The Concurrent C rendezvous model is very similar to that of Ada,
with an important difference: in Concurrent C the entry queues need
not be managed in strict first in, first out manner. Specifically, an
accept statement in Concurrent C may have a suchthat (condition)
clause, which results in the queue being traversed until a pending
call is found for which the specified condi ion is true. Also, an accept
statement can have a by (expression) clause, in which case the
expression is evaluation for each pending call and the call with the
minimum value is accepted. The suchthat and by clauses obviously
result in a priority-queueing mechanism for accept statements. This
feature responds to what many argue is a serious liability in the Ada
model.

4.3.5. Interprocess Communication

Normally, transactions are synchronous as in Ada. As a (recently
added) option, a transaction can be declared as asynchronous, whi-h
allows a caller to continue its execution immediately after making
the call. The language designers admonish the programmer to use
asynchronous transactions only when synchronous ones are not
appropriate, and they point out that asynchronous transactions are not
necessarily faster than synchronous ones but often require much
higher overhead.

An asynchronous transaction is appropriate when the server task is
doing a lot of other work and accepts transaction calls only rarely.
In this case, a caller might be blocked for a long time waiting for
service. Another use might be where transmission delays are long,
for example on a loosely coupled network.

4.3.6. Nondeterministic Constructs

Concurrent C's select statement is almost identical to Ada's. The only
change is that there is no explicit else clause. Instead, Concurrent C
provides for a (possibly guarded) block of statements to be executed if
no other alternative can be immediately selected. Ada's else clause
cannot be guarded, so this facility is an useful addition in Concurrent
C.

4.4 occam

The programming language occam (the name is indeed written in lower
case) was developed in the early 1980s in the United Kingdom
[Pountain87]. It was intended to be a "high-level assembly language" for
the Transputer chip, the main processor component for a highly parallel
computer system. The language can be thought of as an implementation
of CSP, though the notation is changed to a scheme more palatable to
many programmers than the highly mathematical notation of CSP
[Hoare78]. occam is interesting to study because it is gaining in popular-
ity as a language for programming parallel computers. An occam
system, including a Transputer simulator, is widely available under
UNIX and is easily ported to other UNIX target computers.

4.4.1. Process Creation and Activation

Formally, occam treats every statement, including assignment
statements and the like, as a process. A sequence of sequential
statements is treated formally as a seiuence of process creations and
terminations. Creation and activation of processes are therefore

20 Language and System Support for Concurrent Programming SEI-CM-25



trivial operations which appear to be the execution of what are usually
*thought of as statements.

Processes in occam are built up from sequential and parallel compo-
sitions of oher processes, starting with the three primitive processe! of
assignment, input from a channel, and output to a channel.
Composition is done by the SEQ and PAR operations.

Source text in occam is not "free-format" as in most other high-level
languages: block structure is imposed by indentation. The reserved
word SEQ, followed by an indented series of statements, can be
thought of as similar to the begin-end pair identifying a block in
classical Algol-like languages: the statements following the SEQ are
executed in sequence. Similarly, the reserved word PAR followed by
an indented series of statements corresponds to the cobegin-coend
pair of Concurrent Pascal: these statements (or processes in occam's
terminology) are executed in parallel. Deeper nesting is imposed by
deeper indentation; nesting can be to arbitrary depth, including
nested PARs.

Arrays of processes can be created by a replicator operation, syntacti-
cally similar to a counting loop statement in other languages.

4.4. Process Termination

A process in occam terminates (only) when it has finished its work,
that is, when controls flows "off the bottom." There is no special opera-
tion corresponding to the terminate alternative in Ada or Concurrent
C, nor any special way to send a terminate message to a process. The
occam primitive process STOP is not a terminate instruction, rather
just the opposite: STOP blocks forever (a friendly implementation
might detect this situation and write a diagnostic).

4.4.3. Process Scheduling

Parallel processes can, but need not, be explicitly allocated to proces-
sors by the PLACED PAR operation. In the absence of the PLACED
qualifier, the implementation determines the allocation (in the limit,
as always, a single processor).

Assuming that there are fewer processors than processes, scheduling
priorities can be assigned to parallel processes in a very simple
fashion: if the processes are created by a PRI PAR operation, schedul-
ing priority is directly related to the order in which the processes are
written down: a process appearing earlier in the list has a higher
priority than one appearing later. If P and Q are concurrent
processes with priorities p and q such that p < q, then Q is only
allowed to proceed when P cannot proceed (e.g., is blocked on a delay
or an input or output operation). The authors of the occam text advise
very strongly that programs should be designed without recourse to a
PRI PAR; this advice is reminiscent of that encountered among Ada
authors who argue that portable concurrent programs should be writ-
ten so that they are independent of optimization details like schedul-
ing priorities.

In the absence of delays or I/O operations, scheduling appears to be
implementation-dependent, as in Ada. In the University of
Loughborough compiler for UNIX systems-which is readily avail-
able for teaching purposes-the occam program, with all its processes,
is created as a single UNIX process, and the occam internal sched-
uler is invoked whenever a process loops or branches.

SEI-CM-25 Language and System Support for Concurrent Programming 21



4.4.4. Process Synchronization

Synchronization in occam is done by means of operations that
perform input'from or output to channels. Two processes synchronize
only to communicate over a channel.

4.4.5. Interprocess Communication

The only interprocess communication in occam is unidirectional
synchronous message passing over channels. A channel is set up
between two processes; the sending process can only output to the
channel; the receiving process can only input from that channel. A
channel can have a type called a protocol, which is a composite type
analogous to a record. The protocol defines the form of a message.
No buffering is provided by the language; it is up to the programmer
to code processes which act as buffers.

Communication by shared variables is not allowed in occam: if one
component of a PAR assigns to or inputs to a variable, this variable
cannot be used by any other component of the PAR. The basic princi-
ple is that variables are used for storing values while channels are
used for communicating values.

4.4.6. Nondeterministic Constructs

The guarded command is used in occam as a nondeterministic
construct. The basic structure is an ALT keyword followed by a set of
alternatives, each of which consists of an input statement optionally
preceded by a boolean guard, and a series of statements (processes) to
execute if the alternative is selected. An alternative can proceed if its
guard is true and input is available from the channel. The occam
language definition says "an alternation behaves like any one of the
alternatives which can proceed, and can proceed if any of the alterna-
tives can proceed." As in Ada, if two or more alternatives can
proceed, the selection mechanism is not defined by the language and
is thus implementation-dependent.

5. Concurrency Through Portable Libraries

5.1. Modula-2

Modula-2 as described in its reference manual [Wirth85] provides only a
few coroutine primitives. Modula-2's author, Niklaus Wirth, belongs to
what might be called the "small is beautiful" language school, arguing
against high-level concurrency operations. In a 1984 paper [Wirth84] he
asserts that since "genuine concurrency" does not exist in a single-
processor environment, coroutines, the basic mechanism for switching
between logical processes, are sufficient.

Wirth conceived Modula'2 as a general-purpose language for engineer-
ing workstations with a single central processor and a few subsidiary
input/output processors. He provides for coroutines in a set of low-level
facilities and argues that synchronization and communication can and
should be built on top of these using an encapsulation facility (in this
case, the module).

The reference manual gives an example of a simple process manager
encapsulated in a module. This module uses signals for synchroniza-
tion; .'ommunication is done via shared variables. Given coroutines and
the module facility, implementing this or alternative. designs is essen-
tially an exercise in data structures. Indeed, studying and implement-

22 Lariguage and System Support for Concurrent Programming SEI-CM-25



ing alternative process managers in this manner serves as a useful

* project for students.

Implementations of process manage:s appear in a number of publica-
tions, for example Ford and Wiener [Ford85] and King [King88]. Since
these are not part of the language [BS189], but rather programs in it, they
are not described in detail. Examples are included in the support materi-
als; here we discuss only the coroutine primitives described in the refer-
ence manual.

In some of his writings, Wirth refers to a coroutine by the name process.
To avoid confusion with our more general use of the term process, we
prefer to use coroutine here; the teacher or student must be careful in
understanding whether a given Modula-2 reference using the term
process means a coroutine or something more general. Usually the
meaning is clear from context.

5.1.1. Process Creation and Activation

A coroutine is created by a call to the system operation
NEWCOROUTINE (all uppercase; Modula-2 is case-sensitive), whose
input arguments are the name of a parameterless procedure and a
pointer to a workspace. The output of NEWCOROUTINE is a pointer
to a new coroutine. The same procedure can in this way be associated
with multiple coroutines. (Older implementations of Modula-2 call
this system operation NEWPROCESS.)

Modula-2 provides an operation TRANSFER, whose two arguments
are coroutine pointers. The operation transfers control from the first
coroutine to the second, suspending the first and resuming the second
in the state it was in when it yielded control. A transfer serves as an
activation operation since the first transfer to a coroutine effectively
activates it.

5.1.2. Process Termination

No explicit termination is provided. Indeed if control flows "off the
bottom" of a coroutine, in general the entire program is halted.

5.1.3. Process Scheduling

Coroutine transfer can be seen as an explicit processor-scheduling
statement; one coroutine yields control of the processor and transfers
control to another, explicitly named, coroutine. This is the main
scheduling operation provided in the language.

5.1.4. Process Synchronization

No explicit synchronization is provided.

5.1.5. Interprocess Communication

No explicit communication is provided; coroutines are simply
allowed to share any data visible to them.

5.1.6. Nondeterministic Constructs

Nondeterminism in a single-cpu system is caused by interrupts, for
example from input/output devices. The Modula-2 reference manual
[Wirth85] calls for an operation IOTransfer with three arguments:
interrupting coroutine, interrupted coroutine, representation of inter-
rupt vector. The IOTransfer statement is written in an interrupt-
handling coroutine; when an interrupt occurs, the current coroutine

SEI-CM-25 Language and System Support for Concurrent Programming 23



yields control to the interrupt handler, which returns control after
fielding the interrupt.

Since the point at which the current coroutine is interrupted is deter-
mined by an unpredictable event (a device interrupt), this statement
can be seen as a nondeterministic construct. Wirth describes an
interrupt as an unscheduled coroutine transfer.

Wirth recommends that IOTransfer be written only in an interrupt
handler which is encapsulated in a module; it is possible to assign a
priority to such a module so that the interrupt handler is not, itself,
interrupted. This provides a measure of mutual exclusion.

Versions of Modula-2 for multi-user operating systems (UNIX, VMS)
typically do not provide IOTransfer operations, as these are typically
the private domain of the operating system.

24 L&'guage and System Support for Concurrent Programming SEI-CM-25



Teaching
Considerations

Concurrent programming can be taught most effectively in the context Where to Use
of a programming project. The module's concentration on readily the Module
available systems and languages will make the module directly useful
to the widest possible audience.

The material provided here can serve as the basis for a comparative
course in concurrent programming per se (as is taught by the author at
The George Washington University), or as a unit of a course in operat-
ing systems or real-time and distributed systems design.

The educational objectives for courses that include material from this Objectives
module can vary greatly, depending on the kind of course and the
module material selected. At the highest level, an objective is that the
students learn to examine the concurrent programming capabilities of
a programming language by applying the conceptual structure intro-
duced in the module. Students should also be able to distinguish the
various support mechanisms for concurrent programming that are
provided by a computer system's underlying hardware, its operating
system, the features of the various programming languages, and the
libraries written in those languages.

In a course that includes a substantial programming project (as
mentioned above), more ambitious objectives are possible. Two of the
most important are that the students learn to recognize when and how
concurrency can be used in the solution of a software design problem
and that they become proficient in writing simple concurrent programs
in at least one programming language.

If the module is used in support of an operating systems course, the
students should understand how different systems can provide very
different kinds of concurrent programming support. They should also
understand the machine instructions or other hardware features that
exist on modern computers in order to support concurrent program-

Oming.

SEI-CM-25 Language and System Support for Concurrent Programming 25



Prerequisite This module is designed to follow the module Concepts of Concurrent
Knowledge Programming, SEI-CM-24; it is assumed that the reader of this module

is familiar with the material introduced there. That module also
includes a comprehensive glossary.

Students in a course that includes the material in this module should
have basic programming skills, including knowledge of data structures,
abstract data types, and subprogram parameter-passing mechanisms.
For the operating systems section of the module, familiarity with funda-
mental concepts of operating systems is desirable.

Example The program library supplied as supporting material for the module
Programs contains examples of programs in five languages. The first example is

an implementation of the famous Dining Philosophers problem first
stated by Dijkstra [Dijkstra7l]. In this metaphorical statement of dead-
lock and resource allocation problems, five philosophers sit around a
circular table, in the center of which is a infinitely large bowl of Chinese
food. To the left and right of each philosopher is a single chopstick; each
philosopher must try to acquire both chopsticks, eat for awhile, then put
down the chopsticks and think for awhile. This cycle repeats for some
total number of meals. (Dijkstra's original formulation used spaghetti
and forks; we prefer the chopstick setting because most people can eat
spaghetti with one fork.) The algorithm for chopstick selection must be
chosen carefully; otherwise, if all philosophers grab, say, their left chop-
sticks and refuse to yield them, all will starve!

The second example is one we have used with repeated success at The
George Washington University, namely a "sort race" in which three
different sorting methods are activated as processes. Each sort displays
its progress in its "window" (usually a single row) on the terminal;
mutual exclusion is necessary to protect the screen, which is a writable
shared resource. We have found this example interesting and fun-
there is a lot of screen activity; the problem being solved is obvious; and
the three independent sorts serve as placeholders for any three inde-
pendent applications contending for the processor and a shared data
structure. In our comparative concurrency seminar, students must
implement the sort race in the five different languages, starting from
modules like sort subroutines, terminal drivers, process managers, etc.,
supplied by the instructor.

26 Language an:' System Support for Concurrent Programming SEI-CM-25



Bibliography

Ackerman82
Ackerman, W.B. "Parallel Processing in Ada." Computer 15, 2 (1982),
15-25. Reprinted in [Gehani88].

Andrews8l
Andrews, G. R. "Synchronizing Resources." ACM Trans.
Programming Languages and Systems 3, 4 (1981), 405-430.
Reprinted in [Gehani88].

Abstract: A new proposal for synchronization and communication in
parallel programs is presented. The proposal synthesizes and extends
aspects of procedures, coroutines, critical regions, messages, and monitors.
It provides a single notation for parallel programming with or without
shared variables and is suited for either shared or distributed memory
architectures. The essential new concepts are operations, input statements,
and resources. The proposal is illustrated by the solutions of a variety of
parallel programming problems; its relation to other parallel programming
proposals is also discussed.

Andrews83
Andrews, G. R., and F. B. Schneider. "Concepts and Notations for
Concurrent Programming." Computing Surveys 15, 1 (1983), 3-43.
Reprinted in [Gehani88].

Abstract: Much has been learned in the past decade about concurrent
programming. This paper identifies the major concepts of concurrent
programming and describes some of the more important language notations
for writing concurrent programs. The roles of processes, communication,
and synchronization are discussed. Language notations for expressing
concurrent execution and for specifying process interaction are surveyed.
Synchronization primitives based on shared variables and on message
passing are described. Finally, three general classes of concurrent
programming languages are identified and compared.

BaI89
Bal, H. E., J. G. Steiner, and A. S. Tanenbaum. "Programming
Languages for Distributed Computing Systems." Computing
Surveys 21,3 (1989), 261-322.

SEI-CM-25 Language and System Support for Concurrent Programming 27



This is a particularly thorough and clearly written discussion of
programming languages for concurrent programming. It is a useful
survey to distribute to students. As is always the case with Computing
Surveys articles, the bibliography is particularly complete.

Ben-ArI82
Ben-Ani, M. Principles of Concurrent Programming. Englewood
Cliffs, N. J.: Prentice-Hall, 1982.

This short text is a must for beginning students of concurrent program-
ming. All the important concepts are introduced in a tutorial style that is
clear and easy to understand. Formalism is kept to a minimum. A new
version of this book was published early in 1990.

Brinch-Hansen75
Brinch-Hansen, P. "The Programming Language Concurrent
Pascal." IEEE Trans. Software Eng. SE-1, 2 (1975), 199-207.
Reprinted in [Gehani88].

Abstract: This paper describes a new programming language for structured
programming of computer operating systems. It extends the sequential
programming language Pascal with concurrent programming tools
processes and monitors. Section I explains these concepts informally by
means of pictures illustrating a hierarchical design of a simple spooling
system. Section II uses the same example to introduce the language nota-
tion. The main contribution of Concurrent Pascal is to extend the monitor
concept with an explicit hierarchy of access rights to shared data structures
that can be stated in the program text and checked by a compiler.

Brinch-Hansen78
Brinch-Hansen, P. "Distributed Processes: A Concurrent
Programming Concept." Comm. ACM 21, 11 (1978), 934-941.
Reprinted in [Gehani88].

Abstract: A language concept for concurrent processes without common
variables is introduced. These processes communicate and synchronize by
means of procedure calls and guarded regions. This concept is proposed
for real-time applications controlled by microcomputer networks with
distributed storage. The paper gives several examples of distributed
processes and shows that they include procedures, coroutines, classes,
monitors, processes, semaphores, buffers, path expressions, and input/output
as special cases.

Brlstow79
Bristow, G., C. Drey, B. Edwards, and W. Riddle. "Anomaly Detection
in Concurrent Programs." Proc. Fourth International Conference on
Software Engineering. New York: IEEE, September 1979, 265-273.
Reprinted in [Gehani88].

Abstract: An approach to the analysis of concurrent software is discussed.
The approach, called anomaly detection, involves the algorithmic deriva.
tion of information concerning potential errors and the subsequent, possibly
non-algorithmic determination of whether or not the reported anomalies

28 Language and System Support for Concurrent Programming SEI-CM-25



are actual errors. We give overviews of algorithms for detecting data-
usage and synchronization anomalies and discuss how this technique may
be integrated within a general software development support system.

BS189
BSI. Draft British Standard for Programming Language Modula 2:
Third Working Draft. Standard ISO/IEC DP 10514, British Standards
Institute, Nov. 1989.

This standard defines a Processes and a Semaphores module. The
semaphore model makes no allowance for the waiting time of processes
that are delayed.

Burns85
Burns, A. Concurrent Programming in Ada. Cambridge, England:
Cambridge University Press, 1985.

This book serves as a nice introduction to the Ada tasking model; sequen-
tial Ada is not presented in detail. The second half of the book is
especially useful for teachers and students interested in an incisive
critique of the tasking model.

Coleman79
Coleman, D., R. M. Gallimore, J. W. Hughes, and M. S. Powell. "An
Assessment of Concurrent Pascal." Software Practice and
Experience 9 (1979), 827-837. Reprinted in [Gehani88}.

Summary: This paper assesses Concurrent Pascal against its design aims.
The language is shown to be suitable for writing reliable non-trivial
concurrent applications programs and operating systems. The major
weakness of the language is its inability to provide an environment for
other Concurrent Pascal programs. A new language construct, group, is
proposed to remedy this difficulty.

Cook8O
Cook, R. P. "*MOD-A Language for Distributed Computing." IEEE
Trans. Software Eng. SE-6, 6 (1980), 563-571. Reprinted in
[Gehani88].

Abstract: Distributed programming is characterized by high communica-
tions costs and the inability to use shared variables and procedures for
interprocessor synchronization and communication. *MOD is a high level
language system which attempts to address these problems by creating an
environment conducive to efficient and reliable network software con-
struction. Several of the *MOD distributed programming constructs are
discussed as well as an interprocessor communication methodology.
Examples illustrating these concepts are drawn from the areas of network
communication and distributed process synchronization.

SEI-CM-25 Language and System Support for Concurrent Programming 29



CornhiII87
Cornhill, D., and L. Sha. "Priority Inversion in Ada, or What Should
be the Priority of an Ada Server Task?" Ada Letters vii, 7 (Nov.-Dec.
1987), 30-32.

DeiteI84
Deitel, H. M. An Introduction to Operating Systems. Reading, Mass.:
Addison-Wesley, 1984.

This book's main strength is in its case studies of major operating
systems: UNIX, VMS, MVS, VM. Process management is discussed in
reasonable survey depth for each of these.

DoD83
U. S. Department of Defense. Reference Manual for the Ada
Programming Language. ANSI/MIL-STD 1815A, 1983.

This is the official standard governing the Ada programming language.
As language standards go, it is quite well written and not too difficult to
navigate. Like all such documents, it is a much better reference than it
is a text. It should be made available to anyone studying Ada in any but
the most superficial fashion, but is by no means a substitute for a good
textbook. Note: a usefully annotated version of this document is now
available (and recommended); see [Nyberg89].

Dijkstra68

Dijkstra, E. W. "The Structure of the 'THE' Multiprogramming
System." Comm. ACM 11, 5 (May 1968), 341-346.

Abstract: A multiprogramming system is described in which all activities
are divided over a number of sequential processes. These sequential
processes are placed at various hierarchical levels, in each of which one or
more independent abstractions have been implemented. The hierarchical
structure proved to be vital for the verification of the logical soundness of
the design and the correctness of its implementation.

This brief and readable "lessons learned" paper is the earliest widely
published reference to the use of semaphores as a synchronization mech-
anism. It is recommended to both teachers and students as one of the
seminal papers in concurrent programming. Like Dijkstra's "goto
statement considered harmful" letter of the same year, this paper is often
cited, less often read.

Dijkstra7l
Dijkstra, E. W. "Hierarchical Ordering of Sequential Processes."
Acta Informatica 1, 115-138.

In this paper Dijkstra introduced the famous Dining Philosophers
problem.

30 Language and System Support for Concurrent Programming SEI-CM-25



. Dijkstra75
Dijkstra, E. W. "Guarded Commands, Nondeterminacy, and Formal
Derivation of Programs." Comm. ACM 18, 8 (August 1975), 453-457.

Abstract: So-called "guarded commands" are introduced as a building
block for alternative and repetitive constructs that allow nondeterministic
program components for which at least the activity evoked, but possibly the
final state, is not necessarily uniquely determined by the initial state. For
the formal derivation of programs expressed in terms of these constructs, a
calculus will be shown.

This very formal paper introducing the guarded command paved the way
for the practical language construct generally called the select statement.
It is a mathematically dense article, suitable reading for the teacher or
student wishing to go to primary sources and comfortable with the
formalism of program derivation. It is not recommended for a beginner.

Ford85
Ford, G. A., and R. S. Wiener. Modula-2: A Software Development
Approach. New York: John Wiley, 1985.

This is a very complete discussion of Modula-2; the section on concur-
rency is useful in its presentation of alternative process schedulers and
their encapsulation in modules.

Gehani84a
Gehani, N., and T. A. Cargill. "Concurrent Programming in the
Ada Language: The Polling Bias." Software: Practice and
Experience 14 (1984), 413-427. Reprinted in [Gehani88].

Summary: The rendezvous is an important concept in concurrent
programming-two processes need to synchronize, i.e. rendezvous, to
exchange information. The Ada programming language is the first
programming language to use the rendezvous as the basis of its concurrent
programming facilities.

Our experience with rendezvous facilities in the Ada language shows that
these facilities lead to and encourage the design of programs that poll.
Polling is generally, but not always, undesirable because it is wasteful of
system resources.

We illustrate and examine the reasons for polling bias in the Ada language.
We give suggestions on how to avoid polling programs, and suggest changes
to the rendezvous facilities to eliminate the polling bias. The ramifications
of these changes to the implementation of the Ada language are also
discussed.

Although we have focused on the rendezvous facilities in the Ada language
our analysis is also applicable to other languages. A polling bias can occur
in any concurrent programming language based on the rendezvous mech-
anism if it does not provide appropriate facilities.

SEI-CM-25 Language and System Support for Concurrent Programming 31



Gehani84b
Gehani, N. H. "Broadcasting Sequential Processes (BSP)." IEEE
Trans. Software Eng. SE-IO, 4 (1984), 343-351. Reprinted in
[Gehani88].

Communication in a broadcast protocol multiprocessor (BPM) is inher-
ently different from that in distributed systems formed by explicit links
between processors. A message broadcast by a processor in a BPM is
received directly by all other processors in the network instead of being
restricted to only one processor. Broadcasting is an inexpensive way of
communicating with a large number of processors on a BPM. In this
paper I will describe a new approach to user-level distributed program-
ming called Broadcast programming, i.e., distributed programs written as
cooperating broadcasting sequential processes (BSP). Existing concurrent
programming languages do not provide facilities to exploit the broadcast
capability of a BPM. The idea of distributed programs written as BSP is
tailored to exploiting a BPM architecture but is not restricted to such an
architecture-however, implementation of the broadcast capability may not
be as effwient on other architectures. I will illustrate the utility and conve-
nience of broadcast programming with many examples. These examples
will also be used to explore the suitability and advantages of BSP and to
determine appropriate facilities for BSP.

Gehani84c
Gehani, N. Ada Concurrent Programming. Englewood Cliffs, N.J.:
Prentice-Hall, 1984.

This book contains a useful discussion of the Ada tasking model, and
presents a number of good examples. The sequential constructs of Ada
are surveyed briefly but not discussed in detail. This is an excellent text
on Ada tasking; relatively little attention is paid to the problems of
designing systems with concurrent programs.

Gehani88
Gehani, N., and A. D. McGettrick, eds. Concurrent Programming.
Reading, Mass.: Addison-Wesley, 1988.

This collection of 24 papers is a very important addition to the literature
of concurrent programming; most of the seminal papers on concurrent
programming models, notations, and languages are included.

Gehani89
Gehani, N., and W. D. Roome. The Concurrent C Programming
Language. Summit, N.J.: Silicon Press, 1989.

This is the definitive reference to the Concurrent C language. It contains
not only a description of the language but many interesting concurrent
programming examples. A knowledge of C is assumed; only the concur-
rency-related extensions are presented in syntactic detail.

32 Language and System Support for Concurrent PtNgramming SEI-CM-25



. Hoare74
Hoare, C. A. R. "Monitors: An Operating System Structuring
Concept." Comm. ACM 17, 10 (1974), 549-557. Reprinted in
[Gehani88].

Abstract: This paper develops Brinch-Hansen's concept of a monitor as a
method of structuring an operating system. It introduces a form of
synchronization, describes a possible method of implementation in terms of
semaphores and gives a subtle proof rule. Illustrative examples include a
single resource scheduler, a bounded buffer, an alarm clock, a buffer pool,
a disk head optimizer, and a version of the problem of readers and writers.

Hoare78
Hoare, C. A. R. "Communicating Sequential Processes." Comm.
ACM 21, 8 (1978), 666-677. Reprinted in [Gehani88]

Abstract: This paper suggests that input and output are basic primitives of
programming and that parallel composition of communicating sequential
processes is a fundamental program structuring method. When combined
with a development of Dijkstra's guarded command, these concepts are
surprisingly versatile. Their use is illustrated by sample solutions of a vari-
ety of familiar programming languages.

Ichbiah79
Ichbiah, J., et al. Rationale for the Design- of the Ada Programming
Language. ACM SIGPLAN Notices, 14, 6, June 1979, part B.

This rationale was published along with the preliminary Language
Reference Manual, and an earlier version was used as part of the
submission to the language design competition sponsored by DoD, which
resulted in Ada being selected. This version of the rationale is of partic-
ular interest to students and teachers of languages in general and Ada in
particular, as a means of comparison with the current rationale
[Ichbiah86]. While the broad lines of the language did not change
between the preliminary version and the final standard adopted in 1983,
the reader of both documents is struck by the number of changes in the
direction of uniformity and simplicity. Comparing the two tasking
models is especially interesting for students and teachers of concurrent
programming.

Ichbiah86
Ichbiah, J, et al. Rationale for the Design of the Ada Programming
Language. Minneapolis, Minnesota: Honeywell Systems and
Research Center, 1986. Available from the U.S. Government
National Technical Information Service, and commercially through
Silicon Press.

...The original goal was both motivational and defensive; a major concern
was implementability...especially since there were no compilers then in exis-
tence... The present goal is thus now more inspirational: to give the reader a
feel for the spirit of the language, the motives behind the key features and to
create the basis for understanding how they fit together both globally as
viewed from the outside and in detail as viewed from the inside; above all

SEI-CM-25 Language and System Support for Concurrent Programming 33



to impart an appreciation of the main architectural lines of the language
and its overall philosophy. [from the Introduction and Preface]

This is the rationale document corresponding to the current Ada standard
[DoD83]. For students of Ada and programming languages in general,
this is a useful resource in explaining the "why's and wherefore's" of the
language features. The chapter on tasking provides particularly good
insight into the design philosophy. Comparisons with alternative choices
of language structures appear frequently in the document.

IEEE88
Institute of Electrical and Electronics Engineers. IEEE Standard
Portable Operating System Interface for Computer Environments
(POSX). IEEE Std. 1003.1-1988.

This is the defining document for the POSIX Standard, that is, the IEEE
standard for the C programmer's interface to UNIX-like systems. The
rationale, supplied as an addendum to the standard, points out carefully
(p. 175) that POSIX is not a completely faithful rendering of any existing
UNIX system, but rather a good approximation. "The standard is specifi-
cally not a codification of a particular vendor's product. It is like the
UNIX system, but it is not identical to it. The word UNIX is not used in
the standard proper both for that reason, and because it is a trademark of
a particular vendor...The Working Group [the group responsible for writ-
ing the standard] wished to make less work for developers, not more.
However, because every known historical implementation will have to
change -at least slightly to conform, some applications will have to
change. This Rationale points out the major places where the standard
implies such changes."

The UNIX textbook literature has focused primarily on the end-user's
interface to UNIX; discussion in any detail on the programmer's inter-
face is rather hard to find. For those interested in the C interface to UNIX
system services, this is therefore a very useful document, and is reason-
ably clearly written. The rationale makes interesting reading, as it
explains the design choices made in crafting the standard. Like any
standard, though, it is not for beginners.

Kernighan84
Kernighan, B. W., and R. Pike. The UNIX Programming Environ-
ment. Englewood Cliffs, N. J.: Prentice-Hall, 1984.

This book introduces UNIX at the programmer's level, showing how to
write shell scripts, use the translator-writing tools lex and yacc, and so
on. Chapter 7, "System Calls," includes a discussion on processes. It is
the only text we have located that shows how processes work; even here,
the discussion is rather thin and no really nontrivial examples are
given.

Kleburtz79
Kieburtz, R. B., and A. Silberschatz. "Comments on
'Communicating Sequential Processes."' ACM Trans. Prog. Lang.
and Sys. 1, 2 (1979), 218-225. Reprinted in [Gehani88].

34 Language and System Support for Concurrent Programmlg SEI-CM-25



Abstract: In his recent paper, "Communicating Sequential Processes"
(Comm. ACM 21, 8 (Aug. 1978), 666-677), C.A.R. Hoare outlines a
programming language notation for interprocess communication in which
processes are synchronized by the messages they exchange. The notation
carries with it certain implications for the synchronization protocols
required in a message transfer. These are not at all obvious and are made
explicit here. An alternative convention is suggested in which communica-
tion and synchronization are partially uncoupled from one another.

King88
King, K N. Modula-2: a Complete Guide. Lexington, Mass.: D. C.
Heath, 1988.

As the title suggests, this is a complete guide to the Modula-2 program-
ming language. The chapters on coroutines and process schedulers are
especially relevant to students of concurrent programming. Concurrency
is shown as a tool for both abstraction and real-time system development.
Alternative process schedulers are discussed.

Lampson80
Lampson, B. W., and D. D. Redell. "Experience with Processes and
Monitors in Mesa." Comm. ACM 23, 2 (1980), 105-117. Reprinted in
[Gehani88].

Abstract: The use of monitors for describing concurrency has been much
discussed in the literature. When monitors are used in real systems of any
size, however, a number of problems arise which have not been adequately
dealt with: the semantics of nested monitor calls; the various ways of
defining the meaning of wait; priority scheduling; handling of timeouts,
aborts and other exceptional conditions; interactions with process creation
and destruction; monitoring large numbers of small objects. These prob-
lems are addressed by the facilities described here for concurrent
programming in Mesa. Experience with several substantial applications
gives us some confidence in the validity of our solutions.

Liskov83
Liskov, B., and R. Scheifler. "Guardians and Actions: Linguistic
Support for Robust, Distributed Programs." ACM Trans. Prog. Lang.
and Sys. 5, 3 (1983), 381-404. Reprinted in [Gehani88].

Abstract: An overview is presented of an integrated programming language
and system designed to support the construction and maintenance of
distributed programs: programs in which modules reside and execute at
communicating, but geographically distinct, nodes. The language is intended
to support a class of applications concerned with the manipulation and
preservation of long-lived, on-line, distributed data. The language addresses
the writing of robust programs that survive hardware failures without loss
of distributed information and that provide highly concurrent access to that
information while preserving its consistency. Several new linguistic
constructs are provided; among them are atomic actions, and models called
guardians that survive node failures.

SEI-CM-25 Language and System Support for Concurrent Programming 35



Liskov86
Liskov, B., M. Herlihy, and L. Gilbert. "Limitations of Synchronous
Communication with Static Process Structure in Languages for
Distributed Computing." Proc. 13th ACM Symposium on Principles
of Programming Languages. New York: ACM, January 1986.
Reprinted in [Gehani88].

Abstract: Modules in a distributed program are active, communicating
entities. A language for distributed programs must choose a set of commu-
nication primitives and a structure for processes. This paper examines one
possible choice: synchronous communication primitives (such as
rendezvous or remote procedure call) in combination with modules that
encompass a fixed number of processes (such as Ada tasks or UNIX
processes). An analysis of the concurrency requirements of distributed
programs suggests that this combination imposes complex and indirect solu-
tions to common problems and thus is poorly suited for applications such as
distributed programs in which concurrency is important. To provide
adequate expressive power, a language for distributed programs should
abandon either synchronous communication primitives or the static process
structure.

Maekawa87
Maekawa, M., A. E. Oldehoeft, and R. R. Oldehoeft. Operating
Systems: Advanced Concepts. Menlo Park, Calif.: Benjamin
Cummings, 1987.

This is a second-level text in operating systems, focusing on recent
results and concepts. Chapter 3 of the book is a r)ice survey of language
mechanisms for concurrency; Chapters 2 and 4 cover synchronization
and deadlock issues, respectively. The second half of the book covers
distributed systems: distributed concurrency control and deadlock prob-
lems, network structures, etc. Recommended for students with prior
background in operating systems; not recommended for beginners.

Morris79
Morris, J. M. "A starvation-free solution to the mutual exclusion
problem." Information Processing Letters 8 (1979), 76-80.

Nyberg89
Nyberg, K. The Annotated Ada Reference Manual. Vienna,
Virginia: Grebyn Corporation, 1989.

This book contains the full text of ANSI/MIL-STD1815A-1983, the
"Reference Manual for the Ada Programming Language" (LRM), with
inline annotations derived from the Ada Issues (As-sometimes better
known as the Ada Commentaries). The version of the As used in deriving
the annotations in this manual were those available as of the 24th of June,
1989.

The primary purpose of the annotations is to provide greater understanding
and insight into the LRM by including relevant text from the AIs in a
manner in which they are included inline as they apply. [from the
Preliminary section]

36 Language and System Support for Concurrent Programming SEI-CM-25



This is a good source for teachers and students of Ada, as it incorporates
a fair amount of officially sanctioned commentary material into the text
of the language reference manual. The commentaries represent the offi-
cial position of the Ada Joint Program Office on many questions of
unclarity or ambiguity, raised over the years by Ada developers and
users. In the area of concurrent programming, the Chapter 9 annotations
are often very helpful in understanding some of the interpretations,
ambiguities, and open questions in the Ada tasking model.

Pountain87
Pountain, D., and D. May. A Tutorial Introduction to occam
Programming. Oxford, U.K.: BSP Professional Books, 1987.

This is a textbook on the occam programming language. David May was
responsible for designing the occam language and developing the
Transputer architecture for which occam was originally conceived.

Quarterman85
Quarterman, J. S., A. Silberschatz, and J. L. Peterson. "4.2BSD anid
4.3BSD as Examples of the UNIX System." Computing Surveys 17, 4
(1985), 379-418.

Abstract: This paper presents an in-depth examination of the 4.2 Berkeley
Software Distribution, Virtual VAX-11 Version (4.2BSD), which is a
version of the UNIX Time-Sharing System. There are notes throughout on
4.3BSD, the forthcoming system from the University of California at
Berkeley. We trace the historical development of the UNIX system from its
conception in 1969 until today, and describe the design principles that have
guided this development. We then present the internal data structures and
algorithms used by the kernel to support user interface. In particular, we
describe process management, memory management, the file system, the I/0
system, and communications. These are treated in as much detail as the
UNIX licenses will allow. We conclude with a brief description of the user
interface and a set o~ibliographic notes.

Similar to the UNIX chapter in [Silberschatz88], this is a readable survey
of the facilities in the Berkeley implementation of UNIX The discussion
of processes and interprocess communication is particularly well-
summarized and relevant to this module.

Roberts8l
Roberts, E. S., A. Evans, Jr., C. R. Morgan, and E. M. Clarke. "Task
Management in Ada." Software: Practice and Experience 11 (1981),
1019-1051. Reprinted in [Gehani88].

Summary: As the cost of processor hardware declines, multiprocessor
architectures becomes increasingly cost-effective and represent an impor-
tant area for future research. In order to exploit the full potential of multi-
processors, however, it is necessary to understand how to design software
which can make effective use of the available parallelism. This paper
considers the impact of multiprocessor architecture on the design of high-
level programming languages and, in particular, evaluates the language Ada
in the light of the special requirements of real-time multiprocessor systems.
We conclude that Ada does not, as currently designed, meet the needs for
real-time embedded systems.

SEI-CM-25 Language and System Support for Concurrent Programming 37



Rochkind85
Rochkind, M. Advanced UNIX Programming. Englewood Cliffs,
N. J.: Prentice-Hall, 1985.

This book is devoted mainly to advanced file handling and concurrent
programming with the UNIX operating system. It is the only source we
have found in the textbook literature which gives concurrent program-
ming examples detailed enough to show the techniques and the problems
effectively. The book is not for the faint-hearted or the beginning student.
The examples are involved, often tricky, and not always portable. An
operating-systems-oriented instructor can use them selectively to teach the
"how" of concurrent programming in UNIX using C. The intricacy of
these examples makes a very good case for concurrent programming at
the language level!

Roubine8O

Roubine, 0., and J.-C. Heliard. "Parallel Processing in Ada." in
McKeag, R. M., and A. M. Macnaghten, On the Construction of
Programs. Cambridge, U.K.: Cambridge University Press, 1980, 193-
212. Reprinted in [Gehani88].

Schoening86

Schoening, C. "Concurrent Programming in Co-Pascal." Computer
Language (Sept. 1986), 33-37.

Shumate88

Shumate, K. Understanding Concutrrency in Ada. New York, N.Y.:
McGraw-Hill, 1988.

This book presents the Ada tasking model in considerable detail, and
includes five nontrivial case studies of real-time programs using tasks.

Silberschatz88

Silberschatz, A., and J. L. Peterson. Operating System Concepts,
Alternate Edition. Reading, Mass.: Addison-Wesley, 1988.

This is a new edition of a very popular text on operating systems.
"Alternate edition" refers to the fact that discussions of concurrency are
moved to the front of the book and emphasized. Chapter 12 is a quite
readable survey of the UNIX operating system. A similar description of
UNIX is available in [Quarterman85].

Stotts82
Stotts, P. D. "A Comparative Survey of Concurrent Programming
Languages." SIGPLAN Notices 17, 10 (1982), 76-87. Reprinted in
[Gehani88].

Abstract: In the past decade, development of a body of theory for parallel
computation has fostered research into the design of programming
languages intended to facilitate expression of concurrent computations.
Referred to in this report as concurrent languages, or parallel languages,
their number is not nearly as great as that of strictly sequential languages.

38 Language and System Support for Concurrent Programming SEI-CM-25



Many, however, are available for academic study and general use, and
*their number is increasing yearly.

Stroustrup86
Stroustrup, B. The C++ Programming Language. Englewood Cliffs,
N. J.: Prentice-Hall, 1986.

Tanenbaum87
Tanenbaum, A. S. Operating Systems Design and Implementation.
Englewood Cliffs, N. J.: Prentice-Hall, 1987.

This is a useful practical text on operating systems. The Minix operating

system, a variant of UNIX, is used as the design example throughout.

Taylor83
Taylor, R. N. "A General-Purpose Algorithm for Analyzing
Concurrent Programs." Comm. ACM 26, 5 (1983), 362-376. Reprinted
in [Gehani88].

Abstract: Developing and verifying concurrent programs presents several
problems. A static analysis algorithm is presented here that addresses the
following problems: how processes are synchronized, what determines
when programs are run in parallel, and how errors are detected in the
synchronization structure. Though the research focuses on Ada, the results
can be applied to other concurrent programming languages such as CSP.

.Wegner83
Wegner, P., and S. A. Smolka. "Processes, Tasks and Monitors: A
Comparative Study of Concurrent Programming Primitives." IEEE
Trans. Software Eng. SE-9, 4 (1983), 446-462. Reprinted in
[Gehani88].

Abstract: Three notations for concurrent programming are compared,
namely CSP, Ada, and monitors. CSP is an experimental language for
exploring structuring concepts in concurrent programming. Ada is a
general-purpose language with concurrent programming facilities.
Monitors are a construct for managing access by concurrent to shared
resources. We start by comparing "low-level" communication, synchro-
nization, and nondeterminism in CSP and Ada and then examine "higher-
level" module interface properties of Ada tasks and monitors.

Similarities between CSP and Ada include use of "cobegin" construct for
nested process initiation and the "rendezvous" mechanism for synchroniza-
tion. Differences include the mechanisms for task naming and
nondeterminism. One-way (procedure-style) naming of called taiks by
calling tasks in Ada is more flexible than the two way naming CSP. The
general-purpose nondeterminism of guarded in CSP is cleaner than the
special-purpose nondeterminism of the select statement in Ada.

Monitors and tasks are two different mechanisms for achieving serial
access to shared resources by concurrently callable procedures. Both rely
on queues to achieve serialization, but calls on monitor procedures are
scheduled on a single monitor queue while task entry calls are scheduled on

SEI-CM-25 Language and System Support for Concurrent Programming 39



separate queues associated with each entry name. Monitors are passive
modules which are activated by being called, while tasks are active modules
that execute independently of their callers. Monitor procedures represent
multiple threads of control each of which may be suspended and later
resumed, while tasks have just a single thread of control. The attempt to
map a monitor version of a shortest job scheduler into Ada yields interest-
ing insights into the limitations of Ada mechanisms for synchronization, and
suggests that Ada packages may be appropriate than tasks as a user inter-
face for concurrent computation.

Wetherell80
Wetherell, C. "Design Considerations for Array Processing
Languages." Software: Practic'e and Experience 10 (1980), 265-271.
Reprinted in [Gehani88].

Summary: The Department of Energy (DoE) has a long history of large-
scale scientific calculation on the most advanced "number crunching"
computers. Recently, an effort to improve communications and software
sharing among DoE laboratories has been underway. One result of this
sharing is a project to design and implement a common language. That
language turns out to be FORTRAN 77 significantly extended with new data
structures, control structures and array processing. The data used to design
the array processing feature is surprising and likely to be of use to others
working in scientifw language design; it is reported here so that others may
profit from DoE's experience.

Wirth84

Wirth, N. Schemes for Multiprogramming and Their
Implementation in Modula-2. Zurich, Switzerland: ETH, 1984.
Reprinted in [Gehani88].

Two sets of primitive operators for communication among concurrent
processes are presented. They characterize the schemes of communication
via shared variables and signals for synchronization and by message
passing through channels. Their use is demonstrated by simple and typical
examples, and their implementation is described in terms of Modula-2.
Both implementations are based on coroutines for a single-processor
computer (Lilith). The primitives for coroutine handling are also presented
as a Modula-2 module, demonstrating the language's low-level facilities. A
variant of the module for signals is adapted to the needs of discrete event
simulation.

These modules, whose implementation is brief and efficient, demonstrate
that, although Modula-2 lacks a specific construct for multiprogramming,
such facilities are easily expressible and that a programmer can choose a
suitable scheme by selecting the appropriate low-level (library) module.
The conclusion is that, if a language offers low-level facilities and an encap-
sulation construct, it need not offer specific features for multiprogramming.
To the contrary, this might hamper the programmer in his search for an
appropriate and effective solution.

Wirth85
Wirth, N. Programming in Modula-2, 3rd edition. Springer-Verlag,
1985.

40 Language and System Support for Concurrent Programming SEI-CM-25



This is the definitive reference on Modula-2. Wirth's writing style and
the book's typography make it unsuitable for use as a textbook on the
language; also, subtle changes from edition to edition have created diffi-
culties for compiler implementors. The book's usefulness is in revealing
Wirth's ideas and language philosophy, which have not changed across
editions; the book therefore makes good background reading for teachers
and students interested in a language designer's rationale and motiva-
tion.

SEI-CM-25 Language and System Support for Concurrent Programming 41



The Software Engineering Institute (SEI) is a federally funded research and development center, operated by Carnegie
Mellon University under contract with the United States Department of Defense.

The SEI Software Engineering Curriculum Project is developing a wide range of materials to support software engineering
education. A curriculum module (CM) identifies and outlines the content of a specific topic area, and is intended to be
used by an instructor in designing a course. A support materials package (SM) contains materials related to a module
that may be helpful in teaching a course. An educational materials package (EM) contains other materials not necessarily
related to a curriculum module. Other publications include software engineering curriculum recommendations and course
designs.

SEI educational materials are being made available to educators throughout the academic, industrial, and government
communities. The use of these materials in a course does not in any way constitute an endorsement of the course by the
SEI, by Carnegie Mellon University, or by the United States government.

SEI curriculum modules, support materials, and educational materials may be copied or incorporated into other materials,
but not for profit, provided that appropriate credit is given to the SEI and to the original author of the materials.

Comments on SEI educational materials and requests for additional information should be addressed to the Software
Engineering Curriculum Project, Software Engineering Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania
15213. Electronic mail can be sent to education@sei.cmu.edu on the Internet.

Curriculum Modules (* Support Materials available) Educational Materials

CM-1 [superseded by CM-19] EM-i Software Maintenance Exercises for a Software
CM-2 Introduction to Software Design Engineering Project Course
CM-3 The Software Technical Review Process* EM-2 APSE Interactive Monitor: An Artifact for Software
CM-4 Software Configuration Management' Engineering Education

CM-5 Information Protection
CM-6 Software Safety
CM-7 Assurance of Software Quality
CM-8 Formal Specification of Software*
CM-9 Unit Testing and Analysis
CM-10 Models of Software Evolution: Life Cycle and Process
CM-11 Software Specifications: A Framework
CM-12 Software Metrics
CM-13 Introduction to Software Verification and Validation
CM-14 Intellectual Property Protection for Software
CM-15 Software Development and Licensing Contracts
CM-16 Software Development Using VDM
CM-17 User Interface Development*
CM-18 [superseded by CM-231
CM-19 Software Requirements
CM-20 Formal Verification of Programs
CM-21 Software Project Management
CM-22 Software Design Methods for Real-Time Systems*
CM-23 Technical Writing for Software Engineers
CM-24 Concepts of Concurrent Programming
CM-25 Language and System Support for Concurrent

Programming*



I.. REPORT SECURITY CLASSIFICATION lII. RESTRICTIVE MARKINGS

UNCLASSIFIED NONE
2. SECURITY CLASSIFICATION AUTHORITY 3. OISTRIGUTION/AVAeLASILITY OF REPORT

N/A APPROVED FOR PUBLIC RELEASE
2b. OECL^SSIFICATIONOOEWNGRAOING SCHEOULE DISTRIBUTION UNLIMITED

N/A
a PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

SEI-CM-25
60o NAME OF PERFORMING ORGANIZATION ISb. OFFICE SYMBOL 74. NAME OF MONITORING ORGANIZATION

(If applicable)SOFTWARE ENGINEERING INST. SEI SEI JOINT PROGRAM OFFICE

6c. AOORESS (City. State end ZIP Code) " 7. AOORESS (City. State and ZIP Code)

CARNEGIE-MELLON UNIVERSITY ESD/XRS1
PITTSBURGH, PA 15213 HANSCOM AIR FORCE BASE

HANWcoM. MA n1711
go. NAME OF FUNOING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

ORGANIZATION (if opplicoe)

SEI JOINT PROGRAM OFFICE ESD/XRS1 F1962890C0003

8c. AOORESS (City. State ed ZIP Code) 10. SOURCE OF FUNOING NOS.

CARNEGIE-MELLON UNIVERSITY PROGRAM PROJECT TASK WORK UNIT
PITTSBURGH, PA 15213 ELEMENT NO. NO. NO. NO.

it. TI TLE (fnciude Security Caeestiono 63752F N/A N/A N/A

Curriculum Module: LANGUAGE A]- SYqTvm STPP O RRN PRGI=AMI=TN.
2. PERSONAL AUTHOR(S)

Michael B. Feldman
13. TYPE OF REPORT 13b. TIME COVEREO 14. DATE OF REPORT (Yr.. M&. Day) IS. PAGE COUNT

F FROM_ TO__ April 1990 5
id. SUPPLEMENTARY NOTATION

17. COSATI COOES I&E SUBJECT TERMS (Coandn onw awne if necessary ad identify by block nsmber)
FIELO GROUP SUB. GR. concurrent programming Ada

Modula-2 Concurrent C
occam . Concurrent Pascal

It. ABSTRACT lConlinae on moer ivf ntesaary ad den f7 by block nuntberp

This curriculum module is concerned with support for concurrent programming provided
to the application programmer by operating systems and programming languages. This
includes system calls and language constructs for process creation, termination,
synchronization, and communication, as well as nondeterministic language constructs
such as the selective wait and timed call. Several readily available languages
are discussed and compared; concurrent programming using system services of the
Unix operating system is introduced for the sake of comparison and contrast.

0. OISTRISUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

UCLASSIIOAUMLIMTEO J3 SAM AS RPT. 30OTIC USERS 0 UNCLASSIFIED, UNLII'TED DISTRIBUTION

22& NAME OF RESPONSIBLE INOIVIDUAL 22b TIELEPHONE NUMBER 22.. OFFICE SYMBOL
KARL H. SHINGLER Oncal ,m Code)

412 268-7630 SEI JPO

DD FORM 1473. 83 APR OITION OF I JAN 73 IS OBSOLETE.
SECURITY CLASSIFICATION OF THIS PAGE


